Images for Mathematics

Four tetrahedra with an edge in common

remove from album

A simple way to understand why there are only five regular polyhedra is to examine how regular polygons can be disposed around a vertex so that the sum of their angles is smaller than 360°. In the same way, if we want to understand how many 4-dimensional regular politopes there are, we can examine how regular polyhedra can be disposed around an edge so that the sum of their dihedral angles is smaller than 360°. Here we see 4 tetrahedra around an edge (this combination produces the hyperoctahedron); you can compare the image with the photo of a model. See also the other possibilities.

The image belongs to the sections...:
Other costructions (3D geometry)
Images of the exhibition (From the exhibitions of matematita)
Various matters (4D geometry)


Availability

Your album

Your album contains 1 image.

go to album
itenpt
Matematita